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Abstract

The Train Timetabling Problem is an NP-Hard problem, in which one

aims to schedule a number of trains withing a railway network. An ex-

act solution can be obtained using Mixed Integer Linear Programming,

however train scheduling is often approached using heuristics due to

infeasible computation times that Mixed Integer Linear Programming

offers. In this thesis we explore to what extent Mixed Integer Linear

Programming can be used on large scale Train Timetabling Problems by

developing a parser for the test-cases Swiss Federal Railways has made

available, and using it together with a commercial Mixed Integer Linear

Programming solver. Furthermore, we adapt the Alternating Direction

Method of Multipliers to the Train Timetabling Problem by decompos-

ing it into individual problems involving single trains with coupling con-

straints in an effort to speed up the computation. We then test out our

models, producing an analysis of time complexity and suggesting next

steps forward.
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Chapter 1

Introduction

1.1 Motivation

To stay competitive, firms are pressured to reduce costs while increasing the quality

of their output. Railway companies are not an exception; while there is a focus on

improving train themselves, optimal scheduling of trains still remains unsolved for

most large railways. Better schedules can lead to improvements in the quality of

the services, while reducing the need of deploying more trains into the system, all at

zero physical capital cost. The aim is to construct timetables for a number of trains,

such that they all satisfy the business needs of the firm, while reducing the firm’s

operational costs. In particular, Swiss Federal Railways (SBB) [21] has put forward

a challenge which calls for solutions to their particular train scheduling problem,

where the participants are to generate schedules for a number of railway networks

managed by SBB. In its largest scenario, SBB seeks to schedule 287 trains with over

150 stations. SBB describes its constraints, business needs and costs, along with

the railway network in which the trains are to run.

Two trains cannot simultaneously occupy the same track, and therefore when mod-

elling a Train Timetabling Problem (TTP), one usually introduces indicator vari-

ables to denote which train occupies a resource, which results in a Mixed Integer

Linear Program, the solution to which is a globally optimal timetable [2]. Mixed

Integer Linear Programming (MILP) as an NP-Hard problem [14], and due to its

exponential time complexity, there has been a shift away from using MILP in its
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pure form for large scale problems. There has been developed a number of algo-

rithms that impose additional restrictions on the routing, such as train rerouting

possibility [9], [10] and speed modelling [7]. There has also been a drive towards

using heuristics and genetic algorithms to speed up the solution [15], [20]. For in-

stance, in the paper A Genetic Algorithm for Railway Scheduling Problems [22], the

authors implement a sampling algorithm, where a population of problems is allowed

to merge and mutate, and each member of the population is assigned a fitness score.

For each iteration, members are selected into the next population wave according

to their fitness score, and this is iterated until a solution is found. However, the

solution only achieves local optimality, something that is a recurring issue in all the

above approaches, leading to a potential loss of utility for railway firms.

1.2 Objective

This thesis aims to develop a parser that can convert the Train Timetabling

Problems (TTPs) to Mixed Integer Linear Programs that can be applied

to real-life large scale railway networks. The solver is to be built for the SBB

challenge, but should be easily transferable to other problem formulations by modi-

fying the input processing function. Furthermore, we will attempt to formalise

an algorithm that takes advantage of the structural properties of a TTP

by decomposing it into subproblems of individual trains to speed up the

computation. There is no doubt that solving a MILP is NP-hard so worst-case

solution times are expected to scale exponentially, but nevertheless, for smaller prob-

lems it may still be practical to use MILP, and we will investigate how the time

complexity scales with respect to the size of the problem, and determine

a bound on the problem size for which it is computationally tractable to

use a MILP solver.

In order to tackle these challenges, I have drawn on techniques of search algorithms

and heuristics from the course Artificial Intelligence, and content from Machine

Learning, which covers convex optimisation and linear programming. As this thesis

aims to produce a large scale implementation, a prior analysis of feasibility was

conducted using techniques learnt in Requirements.
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1.3 Structure

In the first chapter, the problem of scheduling trains is introduced, alongside current

industry standards for solving it. Further, we discuss the benefits of solving the TTP

using MILP, and set an objective for large scale implementation of a MILP solver,

and checking how it performs on real-life problems.

The second chapter provides the necessary background required to swiftly follow

along this thesis. The Train Timetabling Problem is discussed and formalised to

a general mathematical problem. Furthermore, chapter 2 introduces content on

Optimisation that is relevant to MILP. This includes various optimisation problems,

their properties, definitions and potential solution methods.

The third chapter introduces the SBB challenge, formulates a MILP model and

implements a solver. The requirements and business needs presented in the SBB

challenge are summarised and formalised, which are then used to construct a math-

ematical model of the problem in MILP form. Finally, the chapter describes and

analyses the implementation of a solver that takes inputs from the SBB challenge,

and produces an optimal timetable for all the trains.

To take advantage of the TTP’s structural properties, chapter 4 introduces Alternat-

ing Direction Method of Multipliers (ADMM), which is an algorithm used to serially

solve Mathematical Programs. We adapt the algorithm to our specific problem and

produce an implementation.

Chapter 5 is focused on conducting experiments on test cases provided by SBB

using the parser, a commercial MILP solver and the ADMM adaptation that is

developed. We draw conclusion on the performance, assessing to what extent these

may be usable in practice.

Lastly, chapter 6 summarises all the work done in this thesis. Here, we discuss

the results, the challenges that we faced, and suggest potential improvements and

guidelines for future work.
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Chapter 2

Background

2.1 Train Scheduling

2.1.1 Introduction

The Train Timetabling Problem aims to generate timetables for entry and exit

of trains into different stations along a railway network [1]. Most formulations of

the problem will have specified start stations, end stations, and the respective time

constraints on entry and exit. However, the other constraints can vary from problem

to problem; some may impose constraints on the paths taken, add penalties to

certain sections, as well as time constraints on the intermediary stations. Essentially,

the idea is to generate optimal paths from a start to an end station for all trains

without collisions. The exact definition for optimality will again vary from problem

to problem; in most instances, a cost function can be defined from the constraints

imposed, which can be used to compare different routes.

2.1.2 Formal description

In this thesis, we will consider railway networks that can be modelled as Directed

Acyclic Graphs (DAGs). A DAG is a graph with each edge directed from one node
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to another, and there is no possibility of going in a loop (figure 2.1). Mathematically,

a DAG can be represented as a topologically sorted graph G = (E, V ), where set of

nodes V represents stations, and E is the set of edges connecting the stations.

Figure 2.1: Example of a Directed Acyclic Graph

For N trains, we can define the set of start nodes and end nodes for the i-th train

as Si and Fi. Next, we construct a path for each train: Pi = vi0 → vi1 → ... → vif ,

such that vi0 ∈ Si and vif ∈ Fi. We also wish to compute their timetables, which

can be represented as a function T i : V 7→ R2, mapping nodes to intervals [tin, tout]

of entry and exit times for that node. There may also be constraints on entry and

exit of trains into nodes, such as latest entry, earliest exit, etc., which can generally

be represented as a function Ci : V × R2 7→ {True, False}, which takes in a node

and an interval and returns a boolean, confirming whether time constraints at a

node are satisfied or not. These timetable functions will have to be restricted to the

following properties:

• For two consecutive nodes u and v, maxT i(u) < minT i(v), meaning that exit

time out of a node comes before entry time to the next node.

• T i(n)∩T j(n) = ∅ ∀n ∈ Pi∩Pj ∀i, j ∈ [1, .., N ], meaning there is no overlap

in entries and exits between different trains sharing common nodes.

• ∧n∈Pi
Ci(n, T

i(n)) = True, ∀i ∈ [1, .., N ], which makes sure all the problem-

specific constraints on entry and exit times of nodes are satisfied along the

chosen path. In most train scheduling problems, such constraints will be linear.
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2.2 Mathematical Programming

In this section we introduce all concepts and their relevant properties that are refer-

enced throughout the thesis. The section is not intended to give a formal description

of the topics, but rather provide the reader with an intuitive understanding of prob-

lems in Mathematical Programming and their solution concepts.

2.2.1 Generalised optimisation problem

In general, an optimisation problem can be defined by an objective function f :

Rn 7→ R, which takes in a set of n variables, and returns a scalar, also referred to

as cost. The variables, denoted as x, are then constrained to be in a particular set

S. Thus, a general optimisation problem can be written as:

min
x∈dom(x)

f(x)

subject to: x ∈ S
(2.1)

2.2.2 Convexity

A convex set is a set where there are no two members x and y, such that a straight

line between them crosses the border of the set. Mathematically, a set S is convex

iff ∀x, y ∈ S, ∀t ∈ [0, 1] we have tx+ (1− t)y ∈ S. This is illustrated in figure 2.2.

Figure 2.2: Convex vs non-convex sets

The notion of convexity also extends to functions, where a function f is convex if

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y).
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2.2.3 Convex Programming

A program is convex if both the objective function f and the feasible set S are

convex. The general form can be written as follows:

min
x∈dom(x)

f0(x)

subject to: fi(x) ≤ 0 ∀i ∈ [1..m]

hj(x) = 0 ∀j ∈ [1..p]

(2.2)

Where all functions fi are convex, and all hj are affine.

In a convex program, every local optimum is also a global optimum, so an optimiser

will never get stuck in a valley. That is a fact that follows from the definition of

convexity [13].

2.2.3.1 Interior Point Methods

Interior Point Methods are by far the most popular class of algorithms used to solve

constrained convex optimization problems. Assuming that the function is not only

convex, but also twice differentiable [19], Interior Point Methods reformulate the

problem by adding the constraints as indicator functions into the objective function:

V (x) = f0(x) +
m∑
i=1

I[fi(x)]

such that I[x] = 0 if x ≤ 0 and ∞ otherwise. Further, Interior Point Methods

approximate the indicator function I with logarithmic functions which are differen-

tiable over their domains. The intuitions is for the new objective function to act

as an energy potential for a particle, where the logarithmic functions form energy

barriers:

V (x) = f0(x) + γ

m∑
i=1

log[(fi(x)]
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The force acting on a particle is the negative gradient of the potential, such that it

pushes the particle in space towards its local minimum, at which the net force acting

on the particle sums to zero yielding. Applying this principle yields the following

differntial equation:

−∇V (x) = 0

which can be solved for x using iterative numerical methods. Usually Interior Point

Methods employ the Newton-Raphson method [5], which is a technique to find

roots of a function. The logarithmic function is convex, which implies the potential

function also is convex, and thus guarantees that the algorithm converges towards

optimal x. Figure 2.3 illustrates this method.

Figure 2.3: Visualisation of the Interior Point Method

2.2.4 Linear Programming

In this thesis, we are focusing on linear programs. A linear program takes the

following form:

min
x∈dom(x)

cTx

subject to: aTi x ≤ bi(x) ∀i ∈ [1..m]

hTj x = d ∀j ∈ [1..p]

(2.3)
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What we see is that the objective function is linear, but also all the inequality

constraints are also linear, forming a polyhedral region. Linear Programs are special

cases of convex optimisations, and have no closed form solutions. However, Linear

Programs can be solved in polynomial time [6].

2.2.4.1 Simplex Algorithm

The linear constraints in a LP form a convex polyhedral region, and since the objec-

tive function is linear, it can be shown that the optimum value lays on the surface

of the polyhedron. This further implies that the optimum is on one of the extreme

points. If our variable of interest is n-dimensional, an extreme point is the point of

intersection of n hyperplanes arising from the constraints. In order to avoid search-

ing through all possible vertices, Simplex utilises the fact that a linear function is

strictly increasing, and moves between extreme points along the vertices that in-

crease in value. If no such edge is found, the optimal solution is found. If the edge

is found, but it connects to no extreme point, then the problem is unbounded.

Figure 2.4: Simplex Algorithm

2.2.5 Integer Programming

Integer programming is the class of optimisation problems where some of the vari-

able are required to be integer. Unlike Linear Programming, Integer Programs are

NP-Hard [14]. Note that Integer Programs are non-convex, as their feasible region

contains certain disjoint points in space, so we cannot use convex programming tech-

niques directly to obtain a solution. Instead, we relax the integrality constraints, and

iteratively apply convex optimisation techniques (such as Interior Point Methods, or
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Simplex if the problem is linear) combined with the Branch-and-Bound algorithm

to find the optimal solution satisfying the integer constraints.

A Mixed Integer Linear Program is a program that contains both continues variables

as well as integer variables. It is solved exactly the same way a Linear Integer

Program is, because in every iteration Branch-and-Bound relaxes the integrality

constraints transforming it into a continuous Linear Program.

2.2.5.1 Branch-and-Bound

The standard way of solving Integer Programs is by relaxing the integrality con-

straints and using the Branch-And-Bound algorithm until a feasible solution is found

[16]. Branch-and-bound is a recursive, divide-and-conquer algorithm, that procedu-

rally relaxes integrality constraints, dividing the problem into sub-problems and

adding constraints on the feasible domain.

Consider an integer program where we wish to minimise a function f(x) with respect

to the variable x which is to be in a set S. Firstly, we define the current worst

objective function and the current best objective as +∞, relax all integer constraints,

and solve our first problem, P0. From there, we start branching into sub-problems

Pi. For every Pi, we solve it and get the objective value. If infeasible, we prune the

branch. If the objective is greater than the current best objective, we also prune the

branch. If all the variables come out to satisfy the integrality constraints1 and the

objective value is less than the current best objective, we update our current best

objective and store the solution as the current best. Last case is if the objective

to our current problem is less than the best objective, but some variable xi = v

is not an integer, we branch into two subtrees; one having a new constraint xi ≤
bvc, and the other xi ≥ dve, where b.c and d.e are the floor and ceiling operators,

respectively. This is done until the algorithm terminates with a feasible integer

solution, or all branches are declared infeasible. The Branch-and-Bound algorithm

for integer programming is summarised in algorithm 1.

1The numbers may not come out as exact integers, so we put a tolerance on how close the
number has to be to an integer
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Algorithm 1: Branch-and-Bound

Result: Optimal integer solution
current best← inf ;
current best solution← None;
P0 ← Problem(f,S);
Q← {P0};
while |Q| 6= 0 do

Pi ← Q ;
Q← Q− Pi ;
z, x = solve(Pi);
if z = infeasible then

prune branch ;
if z < current best then

if xj ∈ Z ∀j then
current best← z;
current best solution← x;

if ∃xj ∈ x such that x /∈ Z then
Pi,1 ← Problem(f,S ∪ {xj ≤ bxjc});
Pi,2 ← Problem(f,S ∪ {xj ≥ dxje}) ;
Q← Q ∪ {Pi,1, Pi,2}

end
return current best, current best solution

In its pure form, the Branch-And-Bound algorithm guarantees to find the optimal

solution; however, for large problems, it may become computationally intractable

due to the exponential complexity, so heuristics are often used. However, it should be

noted that heuristic functions are not always admissible (functions that overestimate

the actual cost), thus leading to potential sub-optimal solutions [8].

2.2.6 Lagrangian Duality

Consider a generalised optimisation problem P that can be expressed in the following

primal form2:

min
x∈dom(x)

f0(x)

subject to: fi(x) ≤ 0 ∀i ∈ [1..m]

For this problem, we can define a Lagrangian function:

2Note that an equality can always be expressed as pair of inequalities:
f(x) = 0 =⇒ f(x) ≤ 0 ∧ f(x) ≥ 0.
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L(x, λ) = f0(x) +
m∑
i=1

λifi(x)

For this function, calculating the maximum with respect to lambda recovers the

original problem P:

max
λ≥0

L(x, λ) ≡ P

such that the optimum value of P , p∗ can be found by minimising the Lagrangian

over x:

p∗ = min
x

max
λ≥0

L(x, λ)

However, maximising with respect to λ first is usually infeasible, so instead, we swap

min and max operations:

q∗ = max
λ≥0

min
x
L(x, λ)

getting the following problem D:

max
λ

min
x
L(x, λ)

subject to: λi ≥ 0 ∀i ∈ [1..m]

Problem D is what is referred to as the dual problem.

The Minimax Inequality theorem states that for some function g(x, y), maxy minx g(x, y) ≤
minx maxy g(x, y). Thus, we can conclude that q∗ ≤ p∗, meaning the solution of the

dual serves as a lower bound on the optimum of the primal. p∗ − q∗ is called the

duality gap.

For a Linear Program, it is simple to set up the dual problem as another Linear

Program. Consider the following program:

12



min
x

cTx

subject to: Ax ≤ b

The dual function is then given by

min
x

max
λ≥0

cTx+ λT (Ax− b)

Rearranging the argument to maxλ≥0 minx{(cT +λTA)x}−λT b, we can see that the

argument to the min function explodes to negative infinity unless cT + λTA = 0, in

which case our problem is bounded at −λT b. Thus, the dual program can be stated

as following:

max
λ

− bTλ

subject to: cT + λTA = 0

λ ≥ 0

Lagrangian duality gives us another way of solving potentially non-convex problems.

Under certain conditions, the duality gap is zero, which means solving a dual problem

has the same optimum as the primal problem. If not, the dual provides us with a

lower bound on the solution, which can be used to optimise search over the primal

problem.

2.2.7 Lagrangian Relaxation

Following the section on Lagrangian Duals, we introduce a numerical method to

solve optimisation problems, namely Lagrangian Relaxation. Suppose we wish to

minimise a convex function f(x) subject to linear inequality constraints:

13



min
x

f(x)

subject to: Ax ≤ b

Cx ≤ d

Suppose the constraint Ax ≤ b is a complicating constraint, making the whole

problem more difficult to solve. It may be a constraint that couples various entries

in x, drastically increasing the time an optimiser spends on the problem. In this

scenario, we chose to ‘dualise’ the difficult constraint by adding it to the objective

function, and solving the dual problem (section 2.2.6):

max
λ

{min
x

[J(x, λ) = f(x) + λT (Ax− b)]}

subject to: λ ≥ 0

Cx ≤ d

where λ is a vector of Lagrangian multipliers. In simple terms, we have relaxed the

complicating constraints by penalising them in the objective function. However, we

are still required to maximise the Lagrange multipliers, keeping them non-negative,

as discussed in section 2.2.6.

To solve the problem, we resort to a method called Dual Ascent. Dual ascent is

based on the principle of alternating between minimising the relaxed problem with

respect to x, and climbing in the direction of steepest ascent (Gradient Ascent) with

respect to λ, where the gradient is given by ∇λJ(x, λ) = Ax− b Dual Ascent for a

function J(x, λ) works as following [4]:

Algorithm 2: Dual Ascent

Result: Solves a Lagrangian Relaxation problem
Formulate a stopping criterion P (J, x, λ) ∈ {True, False};
Initialise the arguments x0 and λ0;
while ¬P do

Update x by solving the minimisation problem: xn+1 ← argmin J(x, λn);
Update λ using Gradient Ascent: λn+1 ← max{0, λn + γ∇λJ(xn, λn)};
Update the stopping criterion P ← P (xn+1, λn+1, J(xn+1, λn+1));

end
return xn+1, λn+1, J(xn+1, λn+1)
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The presence of the max function in update of λ ensures that the Lagrangian multi-

pliers remain non-negative. As for the stopping criterion, the standard practice is to

assign a tolerance on the p-norm of the residual Ax− b. Since both the primal and

relaxed objective functions are convex in both x and λ, the algorithm guarantees to

converge to the global optimum x, given appropriate choice of the step size [3].

2.2.7.1 Augmented Lagrangian Form

Augmented Lagrangian Form is an extension of Lagrangian Relaxation, where fur-

ther penalisation of the 2-norm of the residual is added to the objective function:

J(x, λ) = f(x) + λT (Ax− b) +
ρ

2
‖Ax− b‖22

where ρ is a hyperparameter controlling the magnitude of the penalty. The resulting

problem yields the same optima as the primal problem, seeing that optimal x zeros

out the penalty terms. The advantage of using an Augmented Lagrangian Form is

that it reduces the number of assumptions made on the primal objective function,

improving robustness and convergence. The Augmented Lagrangian Form has the

same subgradient as the Relaxed Lagrangian problem, and can be solved using Dual

Ascent.
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Chapter 3

Train Timetabling Problem using

MILP

3.1 SBB challenge

In this thesis, the aim of solving the Train Timetable Problem posed by Swiss Federal

Railways (SBB) [21]. SBB poses a number of business rules to do with consistency

and planning. For this thesis, certain rules were simplified, without altering the core

of the problem.

SBB provides the users with .json files that describe the problems, including network

graphs modelled as Directed Acyclic Graphs for all trains to be scheduled, and the

relevant parameters associated with the problem. The idea is to schedule all trains

in a problem, find which paths they are to take, attaching a timetable of entries

and exits along the chosen paths, while following all the business rules. It should

be noted that this challenge focuses on route sections and not stations (edges of the

graph instead of nodes). Below is a summary of the problem we have formulated

for this thesis:

1. Every train in the problem is scheduled to a single route.

2. A route has to begin at a starting station (node), and finish in a ending station,

as specified in the .json file.
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3. A valid route will be a traversal of the DAG for that train.

4. Consistency between entry and exit times; time out of a route section should

equal to time in to the next route section along a path.

5. Earliest exits and entries for various route section specified in the problem

must be satisfied.

6. Latest exits and entries allow for slack, which is penalised according to the

objective function specified by the SBB challenge.

7. Use of certain route sections are penalised by the objective function as specified

in the problem.

8. If a minimum running time and/or minimum stopping time for a section are

specified, the train must spend at least that duration on the section.

9. Two trains cannot be in the same route at the same time.

10. If two trains are to pass the same route section, the difference between exit

of first train and entry of second train must be more than the release time

specified in the problem.

3.2 Mathematical model

In this section, we will formalise the setup. This section closely follows the work of

Garrisi and Cervelló-Pastor [11], with certain modifications and added formalism.

Note that the | · | operator in this thesis is used to indicate length of vectors and

sets, not to be confused with norms.

3.2.1 Definitions

• si ∈ Z+ - Service intention index, a train to be scheduled.

• r ∈ Z+ - Route index, a complete path from a start to an end station.

• rs ∈ Z+ - Route Section index, an edge in the graph connecting two stations.
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• SI - Set containing unique identifiers for every service intention in the problem.

An element is the index of a service intention.

• tinsi,r,rs ∈ R+ - Time into a route section for a particular train, on a particular

route.

• toutsi,r,rs ∈ R+ - Time out of a route section for a particular train, on a particular

route.

• αsi,rs ∈ {0, 1} - Boolean variable indicating whether a service intention uses a

route section.

• δsi,r ∈ {0, 1} - Boolean variable indicating whether a service intention uses a

route.

• βsi1,si2,rs ∈ {0, 1} - Boolean variable indicating whether two service intentions

use the same route section.

• mrtsi,rs ∈ R+ - Minimum running time a train has to spend on a route section.

• mstsi,rs ∈ R+ - Minimum stopping time a train has to spend on a route section.

• EarInsi,rs ∈ R+ - Earliest time a train is allowed to enter a route section.

• EarOutsi,rs ∈ R+ - Earliest time a train is allowed to exit a route section.

• LatInsi,rs ∈ R+ - Latest time a train is allowed to enter a route section.

• LatOutsi,rs ∈ R+ - Latest time a train is allowed to exit a route section.

• winrs ∈ R+ - Weight associated with entry into a route section. Used for

penalty in the objective function.

• woutrs ∈ R+ - Weight associated with exit from a route section. Used for

penalty in the objective function.

• psi,rs ∈ R+ - Penalty of a train using a particular route section.

• Gi = (Vi, Ei, Di) - Rail network graph for the i-th service intention. Vi is set

of vertices, Ei is the set of edges and Di is a set of data sets associated with

every edge.

• Di - Set of data parameters of service intention i associated with a route sec-

tion. For an element d ∈ Di, d ⊆ {mrt,mst, LatIn, LatOut, EarIn,EarOut}.
This is used for book keeping, as certain edges will only have a subset of con-

straint variables associated with them.
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• Si ∈ Vi - Set of all starting nodes (stations) of the i-th service intention.

• Fi ∈ Vi - Set of all final nodes (stations) of the i-th service intention.

• Pi - Set of admissible paths for the i-th service intention. Each element P ∈ Pi
must be a subraph traversal P ⊆ Gi with root node contained in Si and leaf

node contained in Fi.

3.2.2 Objective function

In the SBB business rules specification, earliest arrival and departure constraints

must be strictly satisfied, however latest arrival and departures are given slack, and

thus are placed in the objective function instead. If a late arrival occurs, then it is

penalised proportionally to the delay and the weight winsi,rs. Similarly, same applies

to delayed entries. Furthermore, SBB requires a fixed penalty for use of certain route

sections. The ratio of delay to route section penalties is 1:60 (expressed in seconds).

Thus, the objective function can be written as:

J(θ) =
1

60

∑
(si,r,rs)∈SO1

winsi,rs max(0, tinsi,r,rs − LatInsi,rs)

+
1

60

∑
(si,r,rs)∈SO1

woutsi,rs max(0, toutsi,r,rs − LatOutsi,rs) +
∑
SO3

psi,rsαsi,rs

(3.1)

where θ is the grand state vector encompassing toinsi,r,rs, t
out
si,r,rs and αsi,rs for all si, r

and rs in the problem. The sets SO1 and SO2 contain all route sections, routes and

service intentions where a requirement on latest entry and latest exists are present.

Mathematically, one could simply add such variables to remaining edges with the

value infinity, however, that would not be computationally efficient, especially when

feeding the problem into a MILP solver. SO3 contains all route sections and their

respective route sections where penalty is non-zero.

It should be noted that the objective function, although convex, does not neces-

sarily have a unique optimum. Consider a single route section problem where the

latest entry is one minute, and latest exit is two minutes. Without any additional

constraints, we can see that any solution (tin, tout) is optimal as long as tin ≤ 1 and
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tout ≤ 2, thus proving by example that an optimal timetable does not need to be

unique (illustration of this example is shown on figure 3.1).

Figure 3.1: Plot of a single route section objective function. LatIn = 1, LatOut = 2,
p = 0. The red area is the set of all optimal solutions.

The modelling is done to transform the Train Timetabling Problem into a Mixed

Integer Linear Program, however the reader may note that the objective function is

non-linear due to the presence of the max operator. However, we can easily rewrite

it into linear form. Consider the following programme:

min
x

∑
i∈I

max(0, xi − ui)

subject to: xi ∈ Si ∀i ∈ I

Introducing slack variables yi, we can rewrite this program into linear form:

min
y

∑
i∈I

yi

subject to: xi ∈ Si

yi ≥ xi − ui ∀i ∈ I

yi ≥ 0
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Since the objective is to minimise the expression, slack variables yi will always either

take on the value of xi − ui or 0.

3.2.3 Constraints

Having formulated the objective function, we already have our first constraints aris-

ing from intoduction of slack variables s:

ssi,r,rs ≥ winsi,rs(t
in
si,r,rs − LatInsi,rs)

ssi,r,rs ≥ 0 ∀(si, r, rs) ∈ SO1

(3.2)

ssi,r,rs ≥ woutsi,rs(t
out
si,r,rs − LatOutsi,rs)

ssi,r,rs ≥ 0 ∀(si, r, rs) ∈ SO2

(3.3)

The following constraints will be of two forms; physical constraints related to the

mechanics of train movement, as well as constraints specified by the business rules.

Firstly, entry time into a route section must come before the exit time into that

route section:

tinsi,r,rs ≤ toutsi,r,rs ∀(si, r, rs) ∈ Sg (3.4)

where Sg is the set containing all service intentions, all their paths and corresponding

route sections.

So far edges and route sections have been used interchangeably, but this is not

entirely the case. It is also important to remember that there are stations (nodes),

and these also need to be associated to a route section. We can define a convention

that a route section will also contain the entry node to its edge. By this convention,

final stations will have no route section association, so we assign them to their edge

(figure 3.2). All the appropriate constraints and parameters are formulated in terms

of route sections rather than stations, with the only exception being start and end

stations, thus making no difference in the computation.
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Figure 3.2: Route sections (dotted line) of a railway network

We will also require that exit time of a route section matches the entry time into a

consecutive route section, thus:

toutsi,r,rs = tinsi,r,rs+1 ∀(si, r, rs) ∈ Sg (3.5)

The indices here are loosely used, but we assume that the set is ordered such that

rs+1 in a path r will always be the consecutive edge. For the last route section, rs+1

will simply be unidentified, but that is handled during the actual implementation.

In this problem, we have time variables for every possible path that a service in-

tention can take. However, in the end only one path is to be assigned. We know

that the path tracking variables δsi,r can be either 0 or 1, so such a check can be

implemented by simply making sure all δsi,r for a service intention sum to 1:

∑
r∈Psi

δsi,r = 1 ∀si ∈ SI (3.6)

Further, we wish to establish a connection between the globally occupied route

sections (αsi,r) and chosen routes (δsi,r). We cannot require that αsi,r = δsi,r, as two

possible paths may have a common route section but only one path can be assigned,

resulting in a contradiction (figure 3.3). Instead, we can simply require selection

variable α for the route section to be greater than or equal to all routes it is present

in:

αsi,r ≥ δsi,r ∀(si, r, rs) ∈ Sg (3.7)
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Figure 3.3: Two routes r=1 (blue), r=2 (pink) and a common route section rs=2

To obey the business rules, we must ensure that earliest entry and exits are satisfied.

We wish to create a constraint such that if δsi,r = 1, i.e. route r is selected, then

tinsi,r,rs ≥ EarInsi,rs and toutsi,r,rs ≥ EarOutsi,rs. Otherwise, we do not care. This

procedure can be linearised using a large constant M :

tinsi,r,rs ≥ EarInsi,rs −M(1− δsi,r) ∀(si, r, rs) ∈ Sei (3.8)

toutsi,r,rs ≥ EarOutsi,rs −M(1− δsi,r) ∀(si, r, rs) ∈ Seo (3.9)

where Sei and Seo are sets containing all route sections, routes and service inten-

tions where a constraints on earliest entries and exits are imposed. The big-M is

a trick for linearising logical gates, where in our case M should be large enough to

deactivate the constraint if the route to which the time belongs is not selected, so

M ≥ maxsi,rs(EarInsi,rs). Again, one could simply assign a value of infinity to un-

constrained route sections, but that would add numerous unnecessary constraints,

making the problem ill-posed and slowing down the solver. Sufficiently large M

ensures that if the route is not chosen, the constraint will be true regardless of the

value of t, making the constraint irrelevant.

SSB also specifies that certain route sections will have a minimum stopping time,

and a minimum running time. Minimum stopping time is determined by the business

needs, so for instance allowing enough passengers to board and disembark the train,

while minimum running time is related to physical speeds the trains can run at.

This essentially means that if a route r containing a route section rs is chosen

23



(δsi,r = 1), then the service intention must spend at least a time of mstsi,rs+mrtsi,rs

on that section. The time a service intention spends on a route section is simply

toutsi,r,rs− tinsi,r,rs. Thus, using the same reasoning as above, we can formulate the linear

constraint:

toutsi,r,rs − tinsi,r,rs ≥ mrtsi,rs +mstsi,rs −M(1− δsi,r) ∀(si, r, rs) ∈ Smt (3.10)

Where the set Smt is a set of all route sections, their paths and service intentions

that have either a minimum stopping time or a minimum running time criterion.

Lastly, we need to add the constraints that couple the trains together. These re-

late to the fact that multiple trains cannot simultaneously occupy the same route

section. For two service intentions, si1 and si2, we find all intersecting edges:

Isi1,si2 = Esi1 ∩ Esi2 , from Gsi1 = (Vsi1 , Esi1) and Gsi2 = (Vsi2 , Esi2). The set

of edges Isi1,si2 will contain all route sections that are in common for two rail-

way networks1. Thus, the binary variable βsi1,si2,rs is uniquely assigned to every

edge in Isi1,si2 . We perform this operation on all combinations of the trains;

{(si1, si2), (si1, si3), ..., (si1, sin), (si2, si3), ..., (si2, sin), ..., (sin−1, sin)}, and aggregate

the indices of service intention pairs, route pairs and route section into a set Sis.

Fixing the tuples in train combinations to be ordered, we introduce the following

convention: if the first service intention enters the section before the second one,

βsi1,si2,rs = 1. Vice versa, βsi1,si2,rs = 0. Above reasoning can be phrased in a linear

manner:

tinsi1,r1,rs ≤ tinsi2,r2,rs +M(1− βsi1,si2,rs)

if βsi1,si2,rs = 1, the constraint tinsi1,r1,rs ≤ tinsi2,r2,rs has to be satisfied. Otherwise, for a

sufficiently large M , LHS will always be less than RHS, and the constraint becomes

inactive. To handle the opposite side, where si2 enters the section first, we write

the following linear model:

tinsi2,r2,rs ≤ tinsi1,r1,rs +Mβsi1,si2,rs

which works in the same way. Lastly, we ensure that the both routes in question

1Formally, we should be taking edges that intersect in the unions of all admissible paths, i.e.
( ∪
p1∈Psi1

p1)∩ ( ∪
p2∈Psi2

p2). However, in the SBB challenge, no redundancies on railway networks and

possible paths are given, thus if an edge exists, there will be an admissible path including that
edge.
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are actually in use, otherwise constraints should be inactive:

tinsi1,r1,rs − t
in
si2,r2,rs

≤M(1− βsi1,si2,rs) +M(2− δsi1,r2 − δsi2,r2) (3.11)

tinsi2,r2,rs − t
in
si1,r1,rs

≤Mβsi1,si2,rs +M(2− δsi1,r2 − δsi2,r2) (3.12)

∀(si1, r1, si2, r2, rs) ∈ Sis

If left this way, service intentions will be able to immediately enter the route section

one after the other. We wish to avoid that; if si1 uses a common route section,

we require that the next train si2 waits R seconds2 after si1’s exit before entering:

tinsi2,r2,rs ≥ toutsi1,r1,rs
+ R. Linearising with respect to β and δ yields the following

system:

toutsi1,r1,rs
− tinsi2,r2,rs +R ≤M(1− βsi1,si2,rs) +M(2− δsi1,r2 − δsi2,r2) (3.13)

toutsi2,r2,rs
− tinsi1,r1,rs +R ≤Mβsi1,si2,rs +M(2− δsi1,r2 − δsi2,r2) (3.14)

∀(si1, r1, si2, r2, rs) ∈ Sis

The MILP can be summarised as following:

J(θ) =
1

60

∑
(si,r,rs)∈SO1

winsi,rsssi,r,rs

+
1

60

∑
(si,r,rs)∈SO1

woutsi,rsssi,r,rs +
∑
SO3

psi,rsαsi,rs

(3.15)

Subject to:

2For the purpose of this challenge, constant R is taken to be fixed throughout the railway
network.
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ssi,r,rs ≥ winsi,rs(t
in
si,r,rs − LatInsi,rs)

ssi,r,rs ≥ 0 ∀(si, r, rs) ∈ SO1

ssi,r,rs ≥ woutsi,rs(t
out
si,r,rs − LatOutsi,rs)

ssi,r,rs ≥ 0 ∀(si, r, rs) ∈ SO2

tinsi,r,rs ≤ toutsi,r,rs ∀(si, r, rs) ∈ Sg

toutsi,r,rs = tinsi,r,rs+1 ∀(si, r, rs) ∈ Sg

∑
r∈Psi

δsi,r = 1 ∀si ∈ SI

αsi,r ≥ δsi,r ∀(si, r, rs) ∈ Sg

tinsi,r,rs ≥ EarInsi,rs −M(1− δsi,r) ∀(si, r, rs) ∈ Sei

toutsi,r,rs ≥ EarOutsi,rs −M(1− δsi,r) ∀(si, r, rs) ∈ Seo

toutsi,r,rs − tinsi,r,rs ≥ mrtsi,rs +mstsi,rs −M(1− δsi,r) ∀(si, r, rs) ∈ Smt

tinsi1,r1,rs − t
in
si2,r2,rs

≤M(1− βsi1,si2,rs) +M(2− δsi1,r2 − δsi2,r2)

tinsi2,r2,rs − t
in
si1,r1,rs

≤Mβsi1,si2,rs +M(2− δsi1,r2 − δsi2,r2)
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∀(si1, r1, si2, r2, rs) ∈ Sis

tinsi1,r1,rs − t
in
si2,r2,rs

≤M(1− βsi1,si2,rs) +M(2− δsi1,r2 − δsi2,r2)

tinsi2,r2,rs − t
in
si1,r1,rs

≤Mβsi1,si2,rs +M(2− δsi1,r2 − δsi2,r2)

∀(si1, r1, si2, r2, rs) ∈ Sis

3.2.4 Complexity analysis

When solving an MILP, we use the Branch-and-Bound algorithm to consecutively

partition the search space, solving the corresponding relaxed Linear Programs.3 In

our case, all our integer variables happen to be binary. Suppose we are at an iteration

i, and we decide to branch on the variable xj. The LP we just solved in iteration

i − 1 is branched into two subprograms, one where xj = 0 and the other xj = 1.

We now solve both subprograms in the same way. The search tree will always have

a branching factor of 2, as explained in algorithm 1. If no branch is ever pruned,

the leafs of the tree will be all possible combinations of the boolean variables, so in

fact the worst-case time complexity of our search is O(2v), where v is the number

of boolean variables. It is impossible to state a closed form number of variables in

this problem, due to the unknown structure of the DAG. Assuming a worst-case

scenario, all service intentions will all have the same railway graph G = (E, V,D),

and the graph starts off with all its root nodes being in S, and all leafs in F . These

are then connected through d layers of b stations each (figure 3.4).

3To relax in this context means dropping integer constraints.
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Figure 3.4: Worst case scenario of a railway network

For every service intention si, there will be |E| variables of α, |S||F |bd paths, cor-

responding to the number of δ-variables, and a total of
(
N
2

)
|E| coupling variables.

Summing over all service intentions, v = N(|E|+|S||F |bd)+ 1
2
N(N−1). What we see

is that the number of variables scale as a square of number of service intentions, but

exponentially with respect to the ‘depth’ of the railway network. Substituting our

expression for the number of leafs generated by Branch-and-Bound, we quickly see

that the algorithm scales at least exponentially with respect to all our parameters.

3.3 Parser Implementation

3.3.1 Rationale

For the implementation of the mathematical model, Python was chosen as the pri-

mary engine due to its versatility and access to vast array of modules. This was done

at the expense of computation times, however it should be noted that the numerical

MILP solver chosen, MOSEK [18] runs under the hood in compiled C++ code. To

formulate the problem into a form that MOSEK can process, we will create vectors

that represent the objective function c, and constraint of the form Aθ ≤ b.
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3.3.2 List of dependencies

• Python 3.6

– Json

– Networkx

– Numpy

– Scipy

– Matplotlib

– Seaborn

• MOSEK

3.3.3 Implementation

3.3.3.1 Higher level overview

The flow of the programme is simple: we start by parsing the json, extracting

and storing all key information. This is then fed into a function that generates

networkx graphs for every service intention, attaching all relevant parameters to

edges of the graphs. These graphs are then used to calculate admissible routes,

which start in nodes labled ’start’ and end in nodes labled ’end’. Having the graphs

and the paths, we create book-keeping data structures that help manage indices

and sets required to formulate the constraints. Now the variables relating to time

(tin, tout), paths (δ), route sections (α) and coupling (β) can be initialised. Having

these data structures, we can use them to generate all appropriate constraints to be

handled by MOSEK, and define a linear objective function cT θ. Provided a feasible

solution exists, MOSEK returns the values of the variables, which are then parsed

into timetables for the chosen paths. A diagram of this process is shown on figure

3.5.
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Figure 3.5: Implementation diagram

3.3.3.2 Parsing json

The input comes as a .json file, composed of three main parts: section requirements,

route sections and resources. Each route section may specify a penalty, a label

and/or a minimum running time specific to itself only. The label is used if a route

section is to have specific requirements; this is where section requirement is used.

Section requirements is a list of labeled sets of requirements, containing a combina-

tion of the following: minimum stopping time, earliest entry and exit, latest entry

and exit, entry and exit delay weight (win, wout) and whether the route section is

a starting or ending section. These are then stored as dictionaries, so lookup can

be done in constant time. In this thesis, resources were reformulated into route

sections, so that part is irrelevant.

3.3.3.3 Generation of Direct Acyclic Graphs

To store the graphs, we use a Python module called networkx. For every service

intention, we generate a graph in the form of Gsi = (Vsi, Esi, Dsi), where Vsi is a

set of nodes, Esi is a set of edges, and Dsi is a set of data dictionaries (hash tables)

associated with every edge. A script was provided by SBB which can convert their

list format to a graph, but essentially works by looping over all route sections gluing

them together using the node labels. This script was modified to also append a

data dictionary to every edge, thus distributing all the necessary constraints over

the appropriate edges. We have now a complete model of the railway network for
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the various service intentions, and have associated all constraints are attached to

the various route sections.

3.3.3.4 Computing all admissible routes

In our mathematical formulation, we index variables by the route r they take. This

means we need to know all the admissible routes we can take. Some of our edges

have their data field labeled as ’start’ or ’end’. For every service intention, we can

construct sets of nodes Ssi and Fsi for starting and ending nodes, respectively. We

can then search for paths. It should be noted that there can be multiple paths

between two nodes, so essentially we will have to traverse the entire graph. Since

we are dealing with a DAG, we can simply do a breadth-first-traversal (BFT) for

every starting node, storing a path every time we hit an ending node. The BFT

will only terminate when there are no more nodes to expand, resulting in all paths

from a node n ∈ Ssi to all nodes in Fsi (algorithm 3). BFT is an exhaustive search

algorithm, but the problem is exponential in the number of nodes; consider the worst

case scenario, where a DAG forms a tree, branching by a factor of b, having a depth

d. Also, suppose that the root node is in Si and all the leafs are in Fi. Thus, we

are forced to traverse the graph, with the time complexity being O(bd+1). However,

our whole problem formulation is NP-hard, which scales exponentially with the

number of variables, so the route calculations are unlikely to be the bottleneck of

this implementation.

Algorithm 3: Path calculation

Result: All possible paths between starting and ending nodes
Initialise P ;
forall si ∈ SI do

Initialise Psi;
Compute Fsi, Ssi;
forall n ∈ Ssi do
T = BFT(n, Gsi, Fsi);
Psi ← Psi ∪ T ;

end
P ← P ∪ Psi;

end
return P
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3.3.3.5 Book-keeping for set generation

The variables for computation will be 1-dimensional vectors s (slack), tin, tout, δ,

α and β. Thus, we need a way of correctly indexing these variables. In section

3.2, various sets were introduced and loosely defined to manage service intentions,

routes and route sections. During implementation, it is instead simpler to create

data structures that will help us loop through relevant parts of the code. First

we define si list. This list contains all route sections for all routes and service

intentions. Suppose the railway network has the DAG shown in figure 3.3 for two

identical service intentions, 1 and 2 (G1 = G2). Suppose also starting nodes for

these trains are A and ending nodes are D,E,G. si list for this scenario is shown

on figure 3.6:

Figure 3.6: si list example. First element of the tuple is the service intention,
second is path number and third is the edge.

Further we set up various maps:

• t index by edge maps edges to a set of indices on t

• delta index by edge maps edges to a set of indices on δ

• edges by path maps edge and path to an index of t

• α index maps service intention and edge to an index of α

• TL maps service intention and variable type (s, tin, etc.) to the length of that

variable for that service intention

These will help us set up the constraints later by simply looping over si list.

We also wish to define a helping list to manage coupling variables β. We wish to make

a list of intersecting edges beta index, as mentioned when setting up constraints

(3.11) to (3.14). The list will contain tuples (si1, si2, e) for all combinations of

service intentions and their intersecting edges. This can be done by algorithm 4
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Algorithm 4: Creation of beta index

Result: Setting up an indexing system for coupling variables
Initialise beta index;
forall (si1, si2) ∈ combinations(SI, 2) do
I = Esi1 ∩ Esi2 ;
forall e ∈ I do

beta index← beta index ∩ (e, si1, si2);
end

end
return beta index

3.3.3.6 Setting up variables

We define the a unified vector containing all variables s, tin, tout, δ, α and β using

the MOSEK.Variable() object. To do so, we need to pre-calculate the length of

every variable. Also, while tin and tout are continuous, δ, α and β must be integers

in {0, 1}. Therefore, we also wish to generate an index list for all the variables that

are boolean, which is done during constraint generation.

To index the time variables, we make use of si list, just as a flat structure, laying

out all edges and iterate through its elements. Similarly, δ is indexed by flattening

out si list, but on one level higher, such that essentially one element in the list

corresponds to one path for some si. α comes in the context of edges, so we use

αindex map for its indexing. The precise indexing of β does not matter, as we will

see in the next section. The summary of the variables is found below:

• s: length = |SO1|+ |SO2|

• tin: length =
∑|si list|

i=1

∑
r∈si listi |r|

• tout: length =
∑|si list|

i=1

∑
r∈si listi |r|)

• δ: length =
∑|si list|

i=1 |si listi|, boolean

• α: length =
∑

si∈SI |Esi|, boolean

• δ: length = |beta index|, boolean

3.3.3.7 Loading constraints and objective function

To store the constraints, we wish to build matrix A and vector b, such that all

constraints can be expressed as Aθ ≤ b. Equality can be rewritten as two inequality
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constraints, so for a constraint dT θ = k we insert the following: dT θ ≤ k and

−dT θ ≤ −k.

However, it is important to consider memory limitations when working with matri-

ces. For an Rm×n matrix, the space complexity is O(mn). The smallest real life

problem presented by SBB comes out to have a 27344 variables and 88789 con-

straints. Due to calculations in seconds, and presence of large linearisation constant

M , we must use at least an unsigned int32 datatype for our matrix, which is stored in

4 bytes. Thus, the memory need for such a matrix is 27344×88789×4B = 9.04GB.

Further, we already discussed that the number of variables scales exponentially, thus

the space required for storing our problem does too. To work around this issue, we

note that most rows in our matrix will be zeros, as most constraints have no more

than 5 variables at a time. We will therefore be using a sparse matrix class from

Scipy. This is a class that stores indices of non-zero elements, drastically reducing

space needed to store a sparse matrix. Theoretically, a Rm×n matrix with a sparsity

density ρ = number of non-zero elements
m×n will only need to store the coordinates i, j and

data d for non-zero elements. ρ can also be seen as the average number of non-zero

elements per row, which in our case is the number of variables per constraint nc,

such that ρ = nc

n
. Thus, our space complexity for such a matrix reduces to O(ncm).

Furthermore, nc for the TTP does not change with scale, as the only thing growing

is number of constraints. Hence, the space complexity of using a sparse matrix for

a TTP is O(m), i.e. scales linearly with the number of constraints. With regard

to time-complexity, regular arrays are faster due to constant time indexing. Sparse

matrices come in three main formats: list of sparse rows, list of sparse columns or

a list of coordinate-data tuples. When looping over service intentions, routes and

route sections, we will constantly be indexing the matrices. Thus, the best choice

to avoid re-looping over list of sparse rows/columns, it is best to generate a list of

coordinate-data tuples, and then convert to a list of sparse rows for faster arithmetic

operations. For the vector b, we can use a regular array, as it is not as sparse, and

will scale linearly with the number of constraints.

Before loading the constraints, everything in (3.4) - (3.14) is rearranged such that all

the variables are on the lesser side of the inequality, and constants on the opposite

side. We then set (3.4) - (3.10) by looping over all service intentions si, their

routes r and route sections rs in every root, while enumerating the inner index

i and the index at the middle level, j. Keeping in mind that our variables are

grouped by service intentions, we introduce a map currlen(si) which returns the

offset needed for the current service intention. We further define indices s idx,

34



tin idx, tout idx, δ idx and xidx that are updated every loop. We keep track of

number of constraints, such that correct, consecutive rows are added. Using i to

generate tin idx = currlen(si) + |ssi| + i and tin idx = currlen(si) + |ssi| + |tins i|
we obtain the correct ordering of variables in θ.

Constraints (3.8) - (3.10) can be set in the same loop. To make sure we only load

the constraints from the sets Sei, Seo and Smt as required, we implement checks

on presence of parameters EarIn, EarOut and mrt or mst. From section 3.3.3.3,

recall that our DAG Gsi = (Vsi, Esi, Dsi) has an edge component e ∈ Esi, which

has a corresponding data component d ∈ Dsi. The data component for an edge is

stored as a hash table, and the relevant parameters in the data component are also

hashed, and can thus be retrieved in O(1) time. If parameter is present, time is

indexed using tin/out idx as discussed, and path variable δ is indexed with δ idx =

currlen(si) + |ssi| + |tins i| + |touts i| + j. Enumerating slack with its own variable k

for the inner loop, we check whether edge rs has parameters LatOut or LatIn, in

which case (3.2) and (3.3) are loaded with slack index currlen(si) + k, and k is

incremented.

Further, we load constraint (3.7) by indexing δ and α using δ idx and α index

respectively, such that α idx = currlen(si)+ |ssi|+ |tins i|+ |touts i|+ |δsi|+α indexsi,rs.

To load constraint (3.6), we set up a temporary list that stores data and δidx within

the middle loop, appending it to global row and data lists in the outer loop.

Coupling constraints are set in a separate loop going through beta index. Using

delta index by edge to get indices of all routes given a service intention and an

edge, we set constraints (3.11) - (3.14) by looping over all possible δ indices for both

service intentions, indexing t using edges by path and β by tracking the index of the

outer loop while adding appropriate offsets, then set constraints.

The objective function vector c can be filled using the same indexing system as

constraints (3.2) - (3.3) and (3.7).

Summary of the above is represented in algorithm (5).
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3.3.3.8 Solver and parsing the output

To solve the problem, the user instantiates a MOSEK environment, which needs to

set an objective function and a set of constraints. We define our variable with the

total length of all variables, passing it a list of indices that need to be binary. There-

after, we call for a solution using the MOSEK optimizer. Under the hood, MOSEK

uses various simplifications to reduce the problem, and then applies Branch-and-

Bound (section 2.2.5.1) together with Simplex Algorithm or Interior Point Methods

(sections 2.2.4.1 and 2.2.3.1). If the solver finds a feasible solution, our variables

will come out with numerical values. Since only one path per service intention is

selected, we find the path where δ = 1, and from there we calculate all the indices in

tin and tout that correspond to that path by inverting the mapping functions defined

in section (3.3.3.6). Lastly, we list them in a human readable format.
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Algorithm 5: Loading all constraints

Result: Matrices A, b and c
Initialise row, col, data, c;
forall si ∈ si list do

i, j, k ← 0, 0, 0 ;
Initialise tempcol, temprow ;
forall r ∈ si do

forall rs ∈ r do
slack idx← currlen(si) + k;
tin idx← currlen(si) + |ssi|+ i;
tout idx← currlen(si) + |ssi|+ |tinsi |+ i;
δ idx← currlen(si) + |ssi|+ |tinsi |+ |toutsi |+ j;
α idx← currlen(si) + |ssi|+ |tinsi |+ |toutsi |+ |δsi|+ α indexsi,rs;
row, col, data← (row, col, data) ∪ {3.4(tin idx, tout idx)};
if rs not last in r then

row, col, data← (row, col, data) ∪ {3.5(tin idx+ 1, tout idx)};
if EarIn ∈ Dsi,rs then

row, col, data← (row, col, data) ∪ {3.8(tin idx)};
if EarOut ∈ Dsi,rs then

row, col, data← (row, col, data) ∪ {3.9(tout idx)};
if mrt ∨mst ∈ Dsi,rs then

row, col, data← (row, col, data) ∪ {3.10(tin idx, tout idx)};
if LatIn ∈ Dsi,rs then

row, col, data← (row, col, data) ∪ {3.2(slack idx)};
k ← k + 1, cslack idx ← 1;

if LatOut ∈ Dsi,rs then
row, col, data← (row, col, data) ∪ {3.3}(slack idx);
k ← k + 1, cslack idx ← 1;

if p ∈ Dsi,rs then
cα idx ← p;

row, col, data← (row, col, data) ∪ {3.7(δ idx, α idx)};
i← i+ 1 ;

end
tempcol, tempdata← (tempcol, tempdata)∪ ({δ idx, δ idx}, {1,−1});
j ← j + 1 ;

end
row, col, data← (row, col, data) ∪ {3.6(temprow, tempcol)} ;

end
i← 0 ;
forall (si1, si2, rs) ∈ beta index do

forall id1 ∈ delta index by edge[si1][rs] do
forall id2 ∈ delta index by edge[si2][rs] do

let edges by path[idn][rs] = ebpn ;
tinn idx← epbn + currlen(sin) + |ssin| ;
toutn idx← epbn + currlen(sin) + |ssin|+ |tinsin| ;
δn idx← idn + currlen(sin) + |ssin|+ |tinsin|+ |t

out
sin |;

β idx← i+
∑

si∈SI currlen(si);
row, col, data←
(row, col, data) ∪ {(3.11− 3.14)(tinsin , tinsin , δn idx, β idx)};

end
end
i← i+ 1;

end
A, b← sparse matrix(row, col, data);
return A, b
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Chapter 4

Solving the MILP using ADMM

4.1 Introduction to Alternating Direction Method

of Multipliers

Alternating Direction Method of Multipliers (ADMM) is an algorithm predomi-

nantly applied to coupled optimization problems [4]. Such problems consist of local

subproblems that require a common consensus, which is usually referred to as cou-

pling or complicating constraints. This is exactly the case in the Train Timetabling

Problem; we are scheduling trains that are to conform to their own physical con-

straints and business rules, but also not collide with the other trains in the network.

Suppose we have a problem of the following form:

min
x,z

f(x) + g(z)

subject to: Alocx ≤ bloc

C locz ≤ dloc

Ax+Bz = c

(4.1)

We observe that if the condition Ax + Bz = c did not exist, we could easily have
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split our problems into two subproblems in x and z:

min
x

f(x)

subject to: Alocx ≤ bloc
(4.2)

min
z

g(z)

subject to: C locz ≤ dloc
(4.3)

In this case, Ax + Bz = c is the complicating constraint. We could of course

solve this problem by concatenating x and z and obtain a solution using the stan-

dard Mathematical Programming techniques discussed in section 2.2, however, that

would not utilise the convenient structure of the problem, resulting in longer com-

putation times. Instead we use ADMM, which works by ‘dualising’ the complicating

constraint in Augmented Lagrangian Form as discussed in section 2.2.7, having the

objective function

J(x, z, λ) = f(x) + g(z) + λT (Ax+Bz − c) +
ρ

2
‖Ax+Bz − c‖22 (4.4)

which is to be solved subject to the local constraints. The problem is iteratively

solved using the Dual Ascent (algorithm 2), but instead of simultaneously minimising

with respect to both x and z, we do it separately, using known solutions for the other

variable from previous iterations:

xn+1 = arg min
x
J(x, zn, λn)

zn+1 = arg min
z
J(xn+1, z, λn)

λn+1 = λn + ρ(Axn+1 +Bzn+1 − c)

(4.5)

In the paper Distributed Optimization and Statistical Learning via the Alternating

Direction Method of Multipliers [4], the authors provide a proof that if the functions

f and g are proper, closed and convex, then ADMM is guaranteed to converge

towards the optimum value of the primal problem. Note that although a MILP is

by definition non-convex due to its feasible region (section 2.2.5), the linear objective
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function is proper, closed and convex, thus the proof of convergence still holds.

4.2 Mathematical reformulation of the TTP

The TTP formualted as a MILP in section 3.2 is indeed a problem that decomposes

into smaller subproblems with added coupling constraints. Inspecting algorithm

5, we see that the constraints for each service intention are loaded sequentially,

followed by the constraints relating pairs of service intentions together. As a result,

the constraint matrix comes out block-diagonal, where each block is specific to a

service intention with all the coupling constraints in a common block on the bottom

(see equation (4.6)).

Even if the coupling constraints did not exist and trains were free to phase through

one another like ghosts, we would still have an integer program, but one that has a

significantly smaller number of constraints. Furthermore, we could solve these prob-

lems separately for every service intention, further reducing the computation times.

We wish to utilize this structure, and ADMM is an algorithm that is suitable for this

procedure. To do so, we need to transform the problem into Augmented Lagrangian

form (equation (4.4)). That still results in quite a large problem, so instead we will

break it up into subproblems that involve pairs of service intentions, which are to

be solved serially for every iteration. This section is inspired by Luan et al. [12],

where the authors apply various serial MILP algorithms on TTPs decomposed into

geographical, temporal and train based problems.

4.2.1 Reformulation of the TTP in Augmented Lagrangian

form

The overall TTP formulated in the section 3.2 Mathematical Model can be written

as following:
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min[csi1 , csi2 , · · · , 0]



θsi1

θsi2
...

θsi|SI|

β


(4.6)

Subject to: 

Asi1 0 · · · 0 0

0 Asi2 · · · 0 0

...
...

. . .
...

...

0 0 · · · Asi|SI| 0

· · · · · · Aβ · · · · · ·





θsi1

θsi2
...

θsi|SI|

β


≤



bsi1

bsi2
...

bsi|SI|

bβ


All scalar elements in δ, α, β are binary

Each θsi is a vector of variables [ssi, t
in
si , t

out
si , δsi, αsi]

T , as defined in section 3.3.3.6,

Asi is the train specific constraint matrix and βsi is the corresponding left hand

side. The bottom block, Aββ ≤ bβ corresponds to all the coupling constraints from

equations (3.11)-(3.14). Similarly, the objective function c = [csi1 , csi2 , · · · , 0]T is

composed of all the train-specific objectives, with zeros at the position of coupling,

as no penalty can occur there.

Neglecting the coupling, every service intention will have its own problem:

min
θsi

cTsiθsi

subject to: ATsiθsi ≤ bsi ∀si ∈ SI

All scalar elements in δsi, αsi are binary

Of course we cannot simply neglect the coupling, as that would mean trains are free

to collide, as they may choose to use the same route sections one another. Instead,

noting that no more than two trains can have a coupling per linear constraint (as

seen in equations (3.11)-(3.14)), we decompose the coupling constraints Aββ ≤ bβ

into couplings involving service intention pairs p, q ∈ SI.
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For every service intention p we wish to formulate a subproblem that involves con-

straints on all trains q that p has coupling with, i.e. service intentions that share

common route sections. Denote this set of trains Qp ⊂ SI.

Consider a scenario with only two service intentions. Referring back to the standard

form shown in equation (4.1), the service intention state-vectors would correspond

to x and z. Thus, for p and q, we need to formulate their coupling constraints in

the form A
(p,q)
β θp+A

(q,p)
β θq ≤ b

(p,q)
β , where A

(p,q)
β contains all variables belonging to p,

A
(q,p)
β contains all variables belonging to q and b

(p,q)
β being the RHS of the inequalty.

However, a complication arises; the coupling variables βp,q,rs do not belong to either

train p or q, but rather belong to both, so in order to be able to decompose the

coupling constraint into the separated form, we instead assign the common βp,q,rs to

both trains. This can be done by using a trick; giving half the value of the variable

to p, and half to q. We illustrate this with an example on constraint (3.11):

tinp,r1,rs − t
in
q,r2,rs

≤M(1− βp,q,rs) +M(2− δp,r2 − δq,r2)

Rearranging the above,

(tinp,r1,rs +Mδp,r2 +
1

2
Mβp,q,rs) + (−tinq,r2,rs + δq,r2 +

1

2
Mβp,q,rs) ≤ 3M

Such that the constraint matrices A
(p,q)
β and A

(q,p)
β for this singular constraint are

[0, 1, 0,M, 0, 1
2
M, 0] and [0,−1, 0,M, 0, 1

2
M, 0], where the zeros are zero-vectors of

appropriate length. Denote the coupling matrix with only variables from p, ex-

cluding β, A
(p,q)
−β , and let Lp,q be the matrix that only contains β (note that L is

symmetrical in p and q such that Lp,q = Lq,p. Thus,

A
(p,q)
β = [A

(p,q)
−β ,

1

2
Lp,q,] (4.7)

A
(p,q)
β = [A

(q,p)
−β ,

1

2
Lp,q] (4.8)

Figure 4.1 shows the sparsity plot (shaded region denotes non-zero elements) of a

constraint matrix from a scenario provided by SBB. a) shows the local constraints,

while b) is the coupling matrix, and in the full problem is a) stacked on top of
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Figure 4.1: Constraint matrix for 4 trains

b). We can see how block pairs of train-specific variables in b) form pairwise train

constraints, in sequence of (1,2), (1,3), (1,4), (2,3), (2,4) and (3,4), and the slant

line on the far right right corresponds to the coupling variables β. Three blocks

were highlighted corresponding to trains 1 and 3; The leftmost block (red) is A
(1,3)
−β ,

the middle (green) is A
(3,1)
−β and the rightmost block (yellow) is L1,3. In order to

construct A
(1,3)
β and A

(3,1)
β , we simply need to cut out the relevant matrices, and

concatenate them together as A
(1,3)
β = [A

(1,3)
−β , 1

2
L1,3,] and A

(3,1)
β = [A

(3,1)
−β , 1

2
L1,3].

Having a framework for the constraint decomposition, we can rewrite problem (4.6)

as an equivalent set of coupled subproblems:
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min
θp

cTp θp

subject to: A
(p,q)
β θp + A

(q,p)
β θq ≤ b

(p,q)
β ∀q ∈ Qp

Apθp ≤ bp

All scalar elements in δp, δq, αp, αq, βqp are binary ∀q ∈ Qp

∀p ∈ SI

ADMM in [4] is formulated using equality constraints; however the paper Distributed

Convex Optimization with Many Non-Linear Constraints [12] shows that the in-

equality constraints can be dealt with by applying a max(0, ·) function; That is, if a

constraint is given by g(x) ≤ 0, we can equivalently rewrite it as max{0, g(x)} = 0,

seeing that if g(x) ≤ 0, constraint reduces to 0 = 0, satisfying our inequality, other-

wise we have g(x) = 0 which still satisfies our inequality:

min
θp

cTp θp

subject to: max{0, A(p,q)
β θp + A

(q,p)
β θq − b(p,q)β } = 0 ∀q ∈ Qp

Apθp ≤ bp

All scalar elements in δp, δq, αp, αq, βqp are binary ∀q ∈ Qp

∀p ∈ SI

(4.9)

There is no need to apply the inequality to equality transformation technique to the

local constraints, as they are assumed to be ‘easy’ to solve, and we have no intention

of dualising them.

Rewriting subproblem p from (4.9) in Augmented Lagrangian form gives the follow-

ing objective function:
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J(θ,Λ) =
∑
p∈SI

(cTp θp +
∑
q∈Qp

λTp,q max{0, A(p,q)
β θp + A

(q,p)
β θq − b(p,q)β }

+
ρ

2

∑
q∈Qp

‖max{0, A(p,q)
β θp + A

(q,p)
β θq − b(p,q)β }‖22)

(4.10)

where the λp,q are Lagrange multipliers1 for service intention p coupled to q, and

Λ = {λp,q|p ∈ SI, q ∈ Qp} is the set of all the multipliers.

4.2.2 Applying ADMM to the MILP in Augmented La-

grangian from

The resulting problem in Augmented Lagrangian form (equation 4.10) is still very

large, as we are solving it simultaneously for all trains. ADMM solves the problem

variable by variable, which means that for train p, only terms involving p will be

‘active’ when solving the problem with respect to θp in an ADMM iteration. Fur-

thermore, the resulting constraint matrix is fully block-diagonal, which means we

can rewrite this problem into an equivalent form composed of subproblems (one for

every service intention) that are to be solved serially. Thus, every subproblem will

have the following objective:

Jp(θ,Λ) = cTp θp +
∑
q∈Qp

λTp,q max{0, A(p,q)
β θp + A

(q,p)
β θq − b(p,q)β }

+
ρ

2

∑
q∈Qp

‖max{0, A(p,q)
β θp + A

(q,p)
β θq − b(p,q)β }‖22

where Λ and θ is a vector containing all state vectors in SI without loss of generality,

as service intentions not coupled to p will simply not be present in the expression.

Before we can use the Augmented Lagrangian in a solver, we need to rewrite it in a

standard form, adding local constraints, and getting rid of the max operator using

slack variables, as previously done in section 3.2.2:

1Note that the multipliers are not symmetrical in p and q (λp,q 6= λq,p)
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min
θp,sp,q∀q∈Qp

Jp(θ,Λ) = cTp θp +
∑
q∈Qp

[
λTp,qsp,q +

ρ

2
sTp,qIsp,q

]
subject to: sp,q ≥ A

(p,q)
β θp + A

(q,p)
β θq − b(p,q)β ∀q ∈ Qp

sp,q ≥ 0

Apθp ≤ bp

All scalar elements in δp, δq, αp, αq, βqp are binary ∀q ∈ Qp

∀p ∈ SI

(4.11)

Where sp,q is the slack variable for p coupling to q, and I is the identity matrix.

Note, that the resulting program is a Mixed Integer Quadratic Program (MIQP),

which we are using to solve a Mixed Integer Linear Program, which is an interesting

outcome. Nevertheless, with integer constraints relaxed, the resulting program is

convex and Interior Point Methods (section 2.2.3.1) can be used for every iteration

of the Branch-and-Bound algorithm (section 2.2.5.1).

During Dual Ascent in conventional ADMM, we iteratively solve the same prob-

lem for one variable at a time using previous solutions for every iteration. Here,

we will solve a whole set of different subproblems, but we will still use the previ-

ously computed variables. For a problem p in the ordered set of problems Π =

[P1, ..., Pp, ..., P|SI|], the update rule at iteration n+ 1 will therefore be as following

for all p:

θn+1
p = arg min

θp
J(θn+1

1 , θn+1
2 , ..., θp, θ

n
p+1, ..., θ

n
|SI|,Λ

n) (4.12)

which is the solution to the program for a chosen p ∈ SI (4.11).

We are picking problems from an ordered set, so the indices say that we pick the most

recent solution for all non-active θj, that is from the current iteration for all problems

before p, and from the previous iteration for all the subsequent problems. After

solving all the subproblems in iteration n+ 1, we climb in the direction of steepest

ascent by updating the multipliers. The gradient is ∇λp,qJ(θ,Λ) = max{0, A(p,q)
β θp+

A
(q,p)
β θq − b(p,q)β }, so we update λp,q ∈ Λ as following:
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λn+1
p,q = λp,q + ρmax{0, A(p,q)

β θn+1
p + A

(q,p)
β θn+1

q − b(p,q)β } (4.13)

The complexity of a MIQP is similar to MILP as both employ tree search over the

feasible domain to deal with the integer valued variables, however, we have reduced

the number of strict constraints, and instead increased the number of problems.

Time complexity obviously scales linearly with the number of problems, but reduces

polynomially with respect to the number of constraints. The reason it does not

reduce exponentially, is that we still require all the same variables to be binary,

which is the biggest computational expense.

4.3 Implementation

4.3.1 Gathering all the parameters

The parser created in section 3.3.3 generates the full matrix A and vectors b and c,

together with a list of indices that need to be binary. In order to set up the problem,

we need to extract and store all Ap, bp, cp, A
(p,q)
β and b

(p,q)
β for all p ∈ SI,∀q ∈ Qp,

modifying A
(p,q)
β according to equation (4.7). To know what slice ranges we need, we

can add a tracker to algorithm 5 which will store width and height indices for the

various service intentions, as well as their couplings. It should be noted that b
(p,q)
β =

b
(q,p)
β , and that A

(p,q)
β for (p, q) = (si1, si2) is equal to A

(q,p)
β for (p, q) = (si2, si1).

This trivial observation can save us a lot of memory; generating these parameters

for all p ∈ SI,∀q ∈ Qp as a permutation loop, we choose to do it in a combination

loop of every coupling. We call this set C, which can be generated in algorithm 4.

Thus, we create a class for every sub-subproblem, for all combinations of service

intentions (listing 1).

To avoid recomputing matrices during ADMM, we initialise a dictionary of sub-

subproblems to store all the information. This is a prime example of time vs memory

tradeoff, but considering the fact that we have been storing the full matrices for the

naive MILP solution approach, this seems reasonable.

Furthermore, we wish to initialise the dual variables, i.e. the Lagrangian multipliers.

They are vectors of length equal to the number of coupling constraints there are for
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import numpy

class SubSubProblem:

def __init__(self, id1, id2, A, b, c):

A1, A2, b1, b2, c1, c2 = self.get_local(id1, id2, A, b, c)

self.A_local = {id1: A1, id2: A2}

self.b_local = {id1: b1, id2: b2}

self.c_local = {id1: c1, id2: c2}

A_12, A_21, b_beta = self.get_coupling(id1, id2, A, b)

self.A_coupling = {id1: A_12, id2: A_21}

self.b_coupling = b_coupling

self.initialise_dual()

def get_local(self, id1, id2, A, b, c):

def get_coupling(self, id1, id2, A, b):

def initialise_dual(self, value):

self.dual = {id1: numpy.full(self.A_coupling[id1].shape[0], value),

id2: numpy.full(self.A_coupling[id2].shape[0], value)}

Listing 1: Class to store information for all couplings

a coupling between two service intentions, but note that even though the lengths of

the Lagrangian multipliers are equal for service intention p and q, they are not the

same variable.

4.3.2 Setting up the solver

The solver underneath the hood will still be MOSEK, but we are required to set

up the correct formulation. First, we initialise our solutions θ0p for all p ∈ SI.

We could solve every uncoupled problem to do so, but that will make a differnce

of one iteration at most, so we choose to simply let all initial solutions be zero

vectors. As the termination critereon, we wish to put a tolerance on a p-norm of the

constraint violation. Constraint violation for a pair of service intentions is given by

max{0, A(p,q)
β θp + A

(q,p)
β θq − b(p,q)β }, as we do not wish to penalise negative numbers.

The choice of norm is a difficult; there are different meanings to the residuals of

the constraints, for instance one may be a violation of time, while the other may

be a violation of a binary variable, making standardisation of tolerance difficult.

To assign the tightest bound, we can choose the ∞-norm, as it will extract the

maximum absolute error from the error vector. Then, we assign a tolerance, at

which the algorithm terminates or a maximum number of iterations.

To actually solve the problems, we loop over all service intentions in SI, and for

48



each we assemble the objective function by doing an inner loop over all the service

intentions it couples to. MOSEK API does not operate with arithmetic operators

the way Numpy does, and nor does it accept Scipy sparse matrices, but has its

own sparse matrix class instead. Nevertheless, Scipy matrices were converted to

MOSEK’s Matrix.Sparse objects, and the objective function constructed the inbuilt

methods that MOSEK features.

One caveat is that MOSEK is based on Conic Programming, which is all about

embedding Mathematical Programs into cones, as the creators claim it is more robust

and numerically stable. Essentially, Linear and Quadratic Programs are a subset

of Conic Programming, as they can be embedded into cones2. Intersecting a cone

with a hyperplane produces the epigraph3 of the desired function, and minimising

over the epigraph is equivalent to minimising over the function itself [23]. We are

interested in embedding the quadratic term, sTp,qIsp,q into a cone. For that, we

choose a rotated quadratic cone Knr = {x ∈ Rn|2x1x2 ≥
∑n

i=3 x
2
i }, and embed the

epigraph of sTp,qIsp,q into the cone using a dummy variable for t for x1 and a constant

of 1/2 to get it into the desired epigraph t ≥ sTp,qsp,q, i.e. [t, 1/2, sp,q] ∈ K|sp,q |+2
r [17].

Lastly, we add t to the objective function such that it is minimised. The resulting

program MOSEK is solving is of the following form:

min
tp,q ,θp,sp,q∀q∈Qp

Jp(θ,Λ) = cTp θp +
∑
q∈Qp

[
λTp,qsp,q +

ρ

2
tp,q

]
subject to: sp,q ≥ A

(p,q)
β θp + A

(q,p)
β θq − b(p,q)β ∀q ∈ Qp

sp,q ≥ 0

Apθp ≤ bp

[t, 1/2, sp,q, tp,q] ∈ K|sp,q |+2
r

All scalar elements in δp, δq, αp, αq, βqp are binary ∀q ∈ Qp

(4.14)

After solving every problem, we update our set of solutions, which are to be used

in the subsequent problems. After all the problems are solved in the iteration, we

2Formally, a cone K is a set of points x ∈ K such that γx ∈ K for all γ ∈ R+

3An epigraph of a function f(x) is {(x, t)|t ≥ f(x)∀x}, i.e. all the points that lay above the
function

49



can update all the Lagrange multipliers as λp,q = ρmax{0, A(p,q)
β θp+A

(q,p)
β θq− b(p,q)β }

for all p ∈ SI,∀q ∈ Qp, and compute the norms. Note, that the ∞-norm is applied

to errors in the whole state vector θ, which can be achieved through the following

operation:

max{‖max{0, A(p,q)
β θp + A

(q,p)
β θq − b(p,q)β }‖∞ | p ∈ SI ∀q ∈ Qp}

yielding the maximum error in the overall problem. The implementation is briefly

summarised in algorithm 6, which omits precise MOSEK definitions and parameters

for convenience, as they are implied by the problem.
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Algorithm 6: Solving the TTP using ADMM

Result: Solution to the TTP
Get A, b, c and bool index from algorithm 5;
Initialise parameters ρ, tolerance ε, max iterations max iter;
Initialise dictionary of subsubproblems Π;
Set error =∞;
forall (p, q) ∈ combinations(SI, 2) do

Π← Π ∪ {SubSubProblem(p, q, A, b, c)};
end
Initialise θp = 0 ∀p ∈ SI;
i← 1;
while error ≥ ε ∨ i ≤ max iter do

forall p ∈ SI do
Set new MOSEK environment;
θp ←MOSEK.V ariable(bool index = bool index) ;
Jp ← 0;
cp ← 0;
forall q ∈ Qp do

Using MOSEK arithmetic and matrix operations;
sq,p ←MOSEK.V ariable();
tq,p ←MOSEK.V ariable();
Jp ← Jp + Πp,q.λ

T
p,qsp,q + ρ

2
tp,q ;

MOSEK.Constraint(sp,q ≥ 0);
MOSEK.Constraint(sp,q ≥
Πp,q.A

(p,q)
β θp + Πp,q.A

(q,p)
β θq − Πp,q.b

(p,q)
β );

MOSEK.Constraint([t, 1/2, sp,q] ∈ K|sp,q |+2
r );

cp ← Πp,q.c;
Ap ← Πp,q.Ap;
bp ← Πp,q.bp;

end
Jp ← Jp + cTp θp;
MOSEK.Constraint(Apθp ≤ bp);
MOSEK.objective(min Jp);
θp ←MOSEK.solve();

end
E ← ∅;
forall p ∈ SI do

forall q ∈ Qp do

Πp,q.λp,q ← Πp,q.λp,q + ρ(Πp,q.A
(p,q)
β θp + Πp,q.A

(q,p)
β θq − Πp,q.b

(p,q)
β );

E ← E ∪ {‖max{0,Πp,q.A
(p,q)
β θp + Πp,q.A

(q,p)
β θq − Πp,q.b

(p,q)
β }‖∞};

end
end
error ← maxE;
i← i+ 1;

end
return θp ∀p ∈ SI
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Chapter 5

Experiments

5.1 TTP to MILP parser

In this section, we evaluate the performance of the TTP to MILP parser that was

implemented in section 3.3.3. This section will focus on time and space usage, which

will aid in evaluating the feasibility of a MILP solver. We test the parser on scenarios

provided by SBB.

5.1.1 Time complexity

The scenarios are characterised by the number of service intentions, time constraints

and the network structure. It is quite difficult to characterise a DAG, especially

with relation to our task. We can consider the number of vertices and edges in

the railway graph, average branching factor and how congested the network is. For

every scenario, we consider the total railway graph G = (E, V ) consisting of merged

network graphs for all service intentions (G = ∪si∈SIGsi).

Number of vertices and edges tells us something about how large a network is, and

branching factor will tell us how connected the network is. The average branching

factor is defined as the average number of child nodes associated with every vertex.
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For a DAG, the average branching factor is given by b = |E|
|V |

1.

By congestion, we are referring to bottlenecks, i.e. nodes that have a high number

of incoming and outgoing edges. Congested networks can lead to an high number of

possible routes a train can take, affecting the computation times; however there is

no simple metric of congestion. Consider the networks illustrated on figure 5.1. Let

both networks represent railways for a train to start at nodes A or B, and finish at

nodes J or H. In network 1, a train can take 6 possible paths, while network 2 allows

for 8 admissible paths. Both networks have the same number of nodes and edges,

same average branching factor yet one is clearly larger in terms of computation. For

this purpose, we define a metric branching variance σ =
∑

n∈V (out(n)−b)2

|V | . A higher

variance means that there is a higher degree of congestion, i.e. some nodes will have

a higher amount of outgoing edges.

Figure 5.1: Example of a Directed Acyclic Graph

Having a metric for every DAG given as a tuple (|SI|, |V |, |E|, b, σ), we can run the

test-cases and record the performance of the different sections. The metric for all

scenarios is summarised on table 5.1, together with the number of boolean variables,

and railway graphs for the first two scenarios are plotted on figure 5.2.

The hardware used in this experiment is a Dell XPS 2018 Laptop with an Intel(R)

Core(TM) i7-8550U CPU @ 1.80GHz CPU and 8GB RAM. Even though the CPU

has 8 cores, it should be noted that the parser runs sequentially, and the only features

that utilises multi-core processing is the MOSEK solver.

During the experiments, the parser failed to fully convert test cases 6,7,8 and 9

due to insufficient memory. The parser failed during matrix assembly, which means

that if the parser is to be used for larger problems, the user will need to have high

1The proof is simple. Every outgoing edge will have a root node, so summing outgoing edges

over all nodes is equivalent to counting the number of edges, thus b =
∑

n∈V out(n)

|V | = |E|
|V |
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Figure 5.2: Graph plots

amounts of RAM, which is not readily available for commercial computers, or write

the matrix to disc, which will significantly impair the performance. Nontheless, cases

0-5 are real life scenarios that the parser was able to process on a Laptop. Table 5.2

shows the computation times for various sections of the program. It is immediately

clear that matrix assembly takes up the majority of computing resources, and is the

main computational challenge of this parser.
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Scenario |SI| |V | |E| b σ constraints boolean variables

sample scenario 2 14 14 1.00 0.29 2047 60
01 dummy 4 106 118 1.11 0.13 7654 605
02 a little less dummy 58 313 378 1.20 0.29 88753 17686
03 FWA 0.125 143 326 399 1.22 0.32 300148 67255
04 V1.02 FWA without obstruction 148 368 466 1.26 0.40 889003 67943
05 V1.02 FWA with obstruction 149 370 469 1.26 0.40 889033 67948
06 V1.20 FWA 365 421 559 1.32 0.80 >16375581 NaN
07 V1.22 FWA 467 421 559 1.32 0.88 NaN NaN
08 V1.30 FWA 133 591 780 1.32 3.28 NaN NaN
09 ZUE-ZG-CH 0600-1200 287 908 1267 1.39 2.65 NaN NaN

Table 5.1: Railway metric for the test-cases

Scenarios
Loading
json

Graph
construction

Path
calculation

Data
structure setup

Matrix
setup

Total

sample scenario 3.2× 10−4s 1.4× 10−3s 1.0× 10−3s 1.1× 10−3s 0.018s 0.022s
01 dummy 6.3× 10−3s 0.04s 3.9× 10−3s 6.4× 10−3s 0.03s 0.09s
02 a little
less dummy

0.05s 0.31s 0.02s 0.25s 1.15s 1.78s

03 FWA 0.125 0.07s 0.63s 0.04s 0.90s 6.43s 8.07s
04 V1.02 FWA
without obstruction

0.15s 0.79s 0.05s 1.03s 10.27s 12.31s

05 V1.02 FWA
with obstruction

0.34s 0.89s 0.053s 1.13s 10.70s 13.11s

06 V1.20 FWA 0.95s 4.78s 5.36s 19.05s NaN > 30.13s

Table 5.2: Parser computation times

In the analysis of the data, no major correlations between computing times and

metrics except for |SI| and number of constraints. The time seems to scale linearly

with the number of constraints, and quadratically with respect to service intentions

(figure 5.3).

Figure 5.3: Number of constraints and service intentions vs time

The constrains are loaded sequentially, so the time is expected to scale proportion-

ally. There is a very important relationship between SI and number of constraints;

in loading the independent constraints, service intentions linearly scale the total

number of root sections that the parser iterates through. However, for the coupling,
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we create all combinations between two service intentions
(|SI|

2

)
, which simplifies

to 1
2
(|SI|2 − |SI|), which explains why there are such a large number of coupling

constraints compared to the independent problems, and thus explains the time com-

plexity observed.

To conclude, we can consider all metrics unrelated to matrix assembly insignificant.

Due to the nature of the test cases, there is no direct evidence of time scaling with the

size of the DAG, however, theoretically we know that this cannot be the case, seeing

that increased number of edges leads to more routes, and the time complexity with

respect to network size should be no better thanO(|E|). Nevertheless, evidence from

the data and analysis agree that the complexity with respect to service intentions

is of order O(|SI|2).

5.1.2 Memory Usage

In section 3.3.3.7 we decided to use a list of sparse rows for the constraint matrices, as

they compress the data by only storing non-zero elements per row of constraints, thus

offering faster matrix multiplication than a coordinate matrix or a sparse column

matrix would. The memory usage for the first 6 test-cases is displayed on table 5.3.

Table 5.3: Constraint memory usage

Scenario A b

sample scenario 103 kB 17 kB
01 dummy 393 kB 68 kB
02 a little less dummy 13.82 MB 1.87 MB
03 FWA 0.125 51.69 MB 6.77 MB
04 V1.02 FWA without obstruction 129.61 MB 16.71 MB
05 V1.02 FWA with obstruction 129.61 MB 16.71 MB

Figure 5.4 shows a plot of memory vs constraints, which confirms the theory dis-

cussed in section 3.3.3.7, which is that matrices A will scale linearly with respect to

number of constraints when using Scipy’s sparse matrix class. b also scales linearly,

as it is an array with a single column, thus every entery corresponds to a constant

addition of memory.

As for the magnitude of the size, we see that the parser should be able to handle

railways with around 150 trains and 150 stations on a commercial computer.
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Figure 5.4: Number of constraints vs matrix size

5.2 Naive MILP solver

As seen in the previous section, the parser was able to handle 6 out of 10 scenarios.

This means we successfully set up a MILP problem, and can attempt to solve it using

MOSEK. We succeeded in the first four test-cases; after 03 FWA 0.125, Python

interpreter killed the processes. The results are shown in table 5.4.

Table 5.4: Solutions using Naive MILP solver

Scenario Solution time Objective value

sample scenario 0.05s 0.0
01 dummy 0.19s 0.1
02 a little less dummy 21.24s 0.1
03 FWA 0.125 464.09s 0.1

Scenario 03 FWA 0.125 is already quite a large problem, with 143 trains and 16

stations, MOSEK managed to find an optimal solution. As discussed in section

3.2.4, the number of integer variables scales quadratically with respect to |SI| and

exponentially with respect to the ‘depth’ of the railway network. In section 3.2.4 we

also showed that the Branch-and-Bound algorithm in the worst case scales exponen-

tially with the number of variables, which explains the intractability of the larger

examples. Not much data is available (figure 5.5), so it is not possible to confirm

the expected trend.
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Figure 5.5: Number of binary variables vs computation time

(a) sample scenario

(b) 01 dummy (slice)

Figure 5.6: Generated timetables

The solutions were verified, and timetables were generated as shown on figure 5.6.

To visualise the timetables, the sequence of route sections were plotted on a space-

time diagram in figure 5.7 for the service intentions involved in the two problems

considered. These plots show entry (circles) and exit (crosses) times into each route

section, although the chart does not help in determining whether any collisions are

scheduled or not, as the chart does not show the actual path the service intention

take.
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(a) sample scenario

(b) 01 dummy

Figure 5.7: Visualisation of train timetables

Solving problems without coupling constraints were an easy task for MOSEK. Prob-

lem 03 FWA 0.125 with 143 trains was solved in 14.53s (vs 464s in the coupled
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case), so if one can manually verify that two trains will not be intersecting, by for

instance considering constraints on earliest and latest entry times and exit times,

the coupling between those trains can be discarded and solutions can be sped up

substantially.

5.3 ADMM solver

The ADMM solver was tested on the two first examples only, as the Python inter-

preter killed the process during computation of sub-subproblems. This is a design

flaw in the implementation that should be further investigated and addressed in the

future. The reason was identified to yet again be insufficient memory, where the

process used up 100% of both RAM and SWAP. The two test-cases that did work

are very promising, but rather inconclusive.

In both instances, optimal solution was found during the first iteration, so the solver

terminated as the∞-norm of the constraint violations was zero. What this means is

that every service intention was able to adapt their route to the routes of the service

intentions solved in the preceding problems, without violating any constraints nor

sacrificing any their primal objective function. This is illustrated using an example

on figure 5.8: consider two trains in a network. The first train starts at A and has

to end in C, whilst the second train starts at B, and can either end in C or D,

such that both paths lead to 0 penalty in its local objective. If solved as uncoupled

problems, both trains are routed to C, which can happen as the optimal solution

is non-unique, as discussed in section 3.2.2, thus pseudo-randomly converge at a

optimal solution. If problem for train 1 is solved first in ADMM, then solution to

problem 2 will switch to route that ends in C to avoid penalisation of constraints.

Conversely, if train 2 is solved for first, when solving for train 1, it will choose to

violate the constraints to avoid penalty delay, and in the next iteration train C will

adjust its course to avoid the penalty violation. In our case, all the trains were able

to adapt to the predecessor without incurring any penalties.

The implementation of the solver procedure was rather inefficient, as the majority

of time was spent to assemble the objective function (inner loop of algorithm 6).

The current implementation pre-computes all matrices in advance, but redefines

the MOSEK environment in every iteration, which MOSEK needs time to compile.

However, the actual time finding optima beats the naive solver for 01 dummy, which

60



Figure 5.8: Example of rerouting during serial solution of problems in ADMM

Table 5.5: ADMM computation times (averaged over 5 test runs)

Scenario
Time spent
searching for
optima

Total time compiling
objective functions

Initialisation of
sub-subproblems

Total
time

sample scenario 0.08s 1.92s 0.033s 2.09s
01 dummy 0.10s 3.18 0.18s 4.12s

for ADMM spends a total of 0.10s searching for optima, vs the naive approach which

averages 0.18s. All the times are summarised on table 5.5.

Recall that a definition of a sub-subproblem is every coupled pair, thus the ADMM

algorithm scales quadratically with the number of service intentions. However, the

time taken to solve every subproblem will fall exponentially due to complexity of

Branch-and-Bound. Thus, if the issue with regards to recompilation of subproblems

can be fixed, by for instances defining MOSEK environments for every subproblem,

declaring Lagrange multipliers and non-active solutions as MOSEK parameters, we

can avoid the need to recompile the problem every iteration.
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Chapter 6

Conclusion

6.1 Conclusions

In this thesis we developed a parser which converts Train Timetabling Problems

into Mixed Integer Linear Programs of the form: max{cTx|Ax ≤ b, Ix ∈ 0, 1}. The

parser was then applied to test-cases provided by SBB, where we tried to obtain

globally optimal solutions using the MOSEK solver. Furthermore, we formulated

and developed an implementation of the Alternating Direction Method of Multipliers

for the TTP as an attempt to speed up the computation.

The parser is implemented in Python, and reads input from json files provided by

SBB, returning constraint matrices and objective function in standard MILP form.

The parser was developed with consideration of time and space complexity, and

performed comparatively well on a commercial laptop. It was able to process 6 out

of 10 test cases, out of which 5 can be regarded real world problems. The process

was terminated by the Python interpreter on the latter cases due to violation system

limits imposed by the OS. That being said, a industry grade computer should be

able to parse some of the failed test cases, but we had no access to a more powerful

machine during development of this thesis. Initially, we started developing the parser

to be used with a library called Cvxpy, which is a preprocessing module for Python

that can convert problems from symbolic form into standard MILP form and directly

pass it to a solver like MOSEK. During the development process, it turned out that

loading constraints in symbolic form slowed down the process considerably, and
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exceeded our machine’s memory capacity after the first two test cases. Furthermore,

when implementing ADMM, Cvxpy showed to suffer from numerical instabilities

when introducing a large number of slack variables. Therefore, we decided to rewrite

the parser to generate sparse matrices and interface with MOSEK directly instead,

which solved our memory issues and eliminated numerical instabilities.

Mixed Integer Linear Programming was declared NP-hard a long time ago, so peo-

ple research quickly shifted towards heuristics and suboptimal solution methods. A

similar thing happened in the field of Machine Learning; the Multilayer Percepetron

was invented in the 1960s, but abandoned as it was declared computationally in-

tractable, which lead to the an ‘AI winter’. However, in late 1990s the concept

was picked up again, as hardware had caught up to the theory, which has resulted

in massive advancements of technology. Similarly, we wanted to revisit MILP as a

solution to the TTP, and see to what extent it can actually be used. We found that

it can solve 4/10 scenarios proposed by SBB. That may not sound impressive from

a standpoint of solving the challenge, but considering that the largest example we

solved had 143 trains spanning over 325 stations, it is safe to say that MILP should

not be discarded in the process of developing railway schedules. It should be noted

that Garrisi and Cervelló-Pastor [11] who focused on implementation of a genetic

algorithm to solve the SBB challange, claim that the second instance 01 dummy is

intractable to solve using a naive MILP solver, which we showed is by far not the

case. Although slower, we managed to find the optimal values of 0.0 for all the

problems to which we applied the algorithm, while they achieved losses of 0.0, 0.0,

106.32, 1530.42 for the first four test cases. These values predominantly represent

delays in minutes, which can be avoided using our programme at the expense of

computation times, which is quite a significant result.

The main motivation to undertake this process was advancements in serial optimi-

sation algorithms, which take advantage of structural properties of a Mathematical

Programs. In the TTP it is the fact that every train has its own problem that

is to be solved in consensus with other trains, forming a partially block-diagonal

constraint matrix and fully separable objective functions. ADMM seemed to be a

suitable algorithm as it can relax the coupling constraints by embedding them into

the cost function of the decomposed problems, which found the solution faster than

the naive approach for the largest test case we were able to apply it to. Unfortu-

nately, due to inefficient implementation, it exceeded the OS system limits for the

8 test cases during the setup phase, and could not be tested further.
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6.2 Future Work

The parser performs quite well as is, and for all practical purposes is fast enough

to convert TTP to a MILP, and we expect it do so if memory requirements can

be successfully addressed. If not, the first line of attack would be to parallelise

the constraint loading stage, as constraints are all independent and can be loaded

concurrently without any exchange of information. In order to actually determine

whether it can be used in industry, it would be instructive to run both the parser

and the naive solver on an industry grade machine, as we are confident that would

parse and solve more scenarios than we were able to during this thesis.

It was very strange to see the ADMM algorithm to fail processing all the cases

that the parser was able to handle, as the failure occurred during the initialisation

of sub-subproblems, where we specifically designed the classes such that no double

information is stored, so that is clearly an issue that needs to be investigated. As

mentioned in the experiment phase, MOSEK recompiles every subproblem, which

involves heavy computations related to the objective function due to exponential in-

crease in coupling, so the next steps would be to extend the sub-subproblem class to

encompass a MOSEK environment, which will store the compiled sub-subproblem,

and simply set the new value of Lagrange multipliers and state vectors for every iter-

ation. As a further step towards reducing solver times, it is worthwhile to investigate

the possibility of integer constraint relaxation of the coupling variables for every iter-

ation. In section 9.1 of the paper Distributed Optimization and Statistical Learning

via the Alternating Direction Method of Multipliers [4], the authors suggest that for

non-convex feasible sets S, one can relax these constraints during the solution of

subproblems, and then project them onto S during the update. In our case that

would be relaxing the binary constraints on β by replacing them with 0 ≤ β ≤ 1,

and rounding β at the end of every iteration. During experimentation, it was dis-

covered that rounding the relaxed variables had a high degree of correlation with

the unrelaxed solution, which means there may potentially be a trade-off between

time spent solving per subproblem and the number of iterations until convergence.

Lastly, as any industrial grade software, all the code should be re-written in a lower

level language to increase robustness and speed.
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tion Model for Railway Networks with Multiplatform Stations”. In: Sustain-

ability 12.1 (2020). issn: 2071-1050. doi: 10.3390/su12010257. url: https:

//www.mdpi.com/2071-1050/12/1/257.
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